Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Exp Cell Res ; 433(2): 113854, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-37952573

RESUMO

Osteoarthritis (OA) is a common musculoskeletal disorder that impairs function and reduces the quality of life. Extracellular matrix (ECM) degradation and inflammatory mechanisms are crucial to the progression of OA. In this study, we aimed to investigate the anti-inflammatory activity, anti-ECM degradation property, and glucose transport capacity of quercitrin (QCT) on IL-1ß-treated rat primary chondrocytes. Rat primary chondrocytes were treated with IL-1ß to simulate inflammatory environmental conditions and OA in vitro. We examined the effects of QCT at concentrations ranging from 0 to 200 µM on the viability of rat chondrocytes and selected 5 µM for further study. Using qRT-PCR, immunofluorescent, immunocytochemistry, and western blotting techniques, we identified the potential molecular mechanisms and signaling pathways that are responsible for these effects. We established an OA rat model through anterior cruciate ligament transection (ACLT). The animals were then periodically injected with QCT into the knee articular cavity. Our in vivo and in vitro study showed that QCT could inhibit IL-1ß-activated inflammation and ECM degradation in chondrocyte. Furthermore, QCT could inhibit the NF-κB signal pathway and enhance glucose transport capacity in the IL-1ß-stimulated chondrocytes. In vivo study proved that QCT attenuates OA progression in rats. Overall, QCT inhibited the activation of NF-κB and enhanced glucose transport capacity to alleviate the progression of OA.


Assuntos
NF-kappa B , Osteoartrite , Ratos , Animais , NF-kappa B/metabolismo , Qualidade de Vida , Células Cultivadas , Transdução de Sinais , Osteoartrite/tratamento farmacológico , Osteoartrite/metabolismo , Inflamação/metabolismo , Condrócitos/metabolismo , Glucose/farmacologia , Interleucina-1beta/farmacologia , Interleucina-1beta/metabolismo
2.
Small ; 19(40): e2302799, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37264755

RESUMO

Effective treatments for cartilage defects are currently lacking. Gene delivery using proper delivery systems has shown great potential in cartilage regeneration. However, the inflammatory microenvironment generated by the defected cartilage severely affects the system's delivery efficiency. Therefore, this study reports a silk fibroin microcapsule (SFM) structure based on layer-by-layer self-assembly, in which interleukin-4 (IL-4) is modified on silk by click chemistry and loaded with lysyl oxidase plasmid DNA (LOX pDNA). The silk microcapsules display good biocompatibility and the release rate of genes can be adjusted by controlling the number of self-assembled layers. Moreover, the functionalized SFMs mixed with methacrylated gelatin (GelMA) exhibit good injectability. The IL-4 on the outer layer of the SFM can regulate macrophages to polarize toward the M2 type, thereby promoting cartilage matrix repair and inhibiting inflammation. The LOX pDNA loaded inside can be effectively delivered into cells to promote extracellular matrix generation, significantly promoting cartilage regeneration. The results of this study provide a promising biomaterial for cartilage repair, and this novel silk-based microcapsule delivery system can also provide strategies for the treatment of other diseases.


Assuntos
Fibroínas , Fibroínas/química , Cápsulas , Interleucina-4 , Cartilagem , Seda/química , DNA , Regeneração , Tecidos Suporte/química , Engenharia Tecidual
3.
Biochem Biophys Res Commun ; 640: 164-172, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36512848

RESUMO

Osteoarthritis (OA) places a significant burden on society and finance, and there is presently no effective treatment beside late replacement surgery and symptomatic relief. The therapy of OA requires additional research. Gardenoside is a naturally compound extracted from Gardenia jasminoides Ellis, which has a variety of anti-inflammatory effects. However, few studies have been conducted to determine the role of gardenoside in OA. This study aimed to explore whether gardenoside has effect in OA treatment. Rat primary chondrocytes were treated with IL-1ß to simulate inflammatory environmental conditions and OA in vitro. We examined the effects of gardenoside at concentrations ranging from 0 to 200 µM on the viability of rat chondrocytes and selected 10 µM for further study. Via in vitro experiments, our study found that gardenoside lowers the gene expression of COX-2, iNOS, IL-6, and reduced the ROS production of chondrocytes induced by IL-1ß. Moreover, it effectively alleviates ECM degradation caused by IL-1ß and promotes the ECM synthesis in chondrocytes by upregulating collagen-II and the ACAN expression, downregulating the expression of MMP-3, MMP-13, and ADAMTS-5 expression. Further, our study showed that gardenoside inhibits NF-κB signaling pathway activated by IL-1ß in chondrocytes. We established an OA rat model by anterior cruciate ligament transection (ACLT). The animals were then periodically injected with gardenoside into the knee articular cavity. In vivo study suggested that gardenoside attenuates OA progression in rats. As a whole, in vitro and in vivo results highlight gardenoside is a promising OA treatment agent.


Assuntos
Matriz Extracelular , Iridoides , NF-kappa B , Osteoartrite , Animais , Ratos , Células Cultivadas , Condrócitos/efeitos dos fármacos , Condrócitos/metabolismo , Inflamação/tratamento farmacológico , Interleucina-1beta/metabolismo , Iridoides/farmacologia , Iridoides/uso terapêutico , NF-kappa B/metabolismo , Osteoartrite/tratamento farmacológico , Osteoartrite/metabolismo , Transdução de Sinais , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/metabolismo
4.
Drug Des Devel Ther ; 16: 3793-3804, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36345305

RESUMO

Purpose: Osteoarthritis (OA) places a significant burden on society and finance, and there is presently no effective treatment besides late replacement surgery and symptomatic relief. The therapy of OA requires additional research. Madecassic acid (MA) is the first native triterpenoid compound extracted from Centella asiatica, which has a variety of anti-inflammatory effects. However, the role of MA in OA therapy has not been reported. This study aimed to explore whether MA could suppress the inflammatory response, preserve and restore chondrocyte functions, and ameliorate the progression of OA in vitro and in vivo. Methods: Rat primary chondrocytes were treated with IL-1ß to simulate inflammatory environmental conditions and OA in vitro. We examined the effects of MA at concentrations ranging from 0 to 200 µM on the viability of rat chondrocytes and selected 10 µM for further study. Using qRT-PCR, immunofluorescent, immunocytochemistry, and Western blotting techniques, we identified the potential molecular mechanisms and signaling pathways that are responsible for these effects. We established an OA rat model by anterior cruciate ligament transection (ACLT). The animals were then periodically injected with MA into the knee articular cavity. Results: We found that MA could down-regulate the IL-1ß-induced up-regulation of COX-2, iNOS and IL-6 and restore the cytoskeletal integrity of chondrocytes treated with IL-1ß. Moreover, MA protects chondrocytes from IL-1ß-induced ECM degradation by upregulating ECM synthesis related protein expression, including collagen-II and ACAN, and further down-regulating ECM catabolic related protein expression, including MMP-3 and MMP-13. Furthermore, we found that NF-κB/IκBα and PI3K/AKT signaling pathways were involved in the regulatory effects of MA on the inflammation inhibition and promotion of ECM anabolism on IL-1ß-induced chondrocytes. Conclusion: These findings suggest that MA appears to be a potentially small molecular drug for rat OA.


Assuntos
Osteoartrite , Triterpenos , Ratos , Animais , Fosfatidilinositol 3-Quinases/metabolismo , Células Cultivadas , Osteoartrite/tratamento farmacológico , Osteoartrite/metabolismo , Condrócitos , Interleucina-1beta/metabolismo , Triterpenos/uso terapêutico , NF-kappa B/metabolismo , Inflamação/tratamento farmacológico
5.
J Bone Miner Res ; 37(3): 559-576, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34870341

RESUMO

Skeletal stem/progenitor cells (SSPCs) can differentiate into osteogenic or adipogenic lineage. The mechanism governing lineage allocation of SSPCs is still not completely understood. Hedgehog (Hh) signaling plays an essential role in specifying osteogenic fate of mesenchymal progenitors during embryogenesis. However, it is still unclear whether Hh signaling is required for lineage allocation of SSPCs in postnatal skeleton, and whether its dysregulation is related to age-related osteoporosis. Here, we demonstrated that Hh signaling was activated in metaphyseal SSPCs during osteogenic differentiation in the adult skeleton, and its activity decreased with aging. Inactivation of Hh signaling by genetic ablation of Smo, a key molecule in Hh signaling, in Osx-Cre-targeted SSPCs and hypertrophic chondrocytes led to decreased bone formation and increased bone marrow adiposity, two key pathological features of age-related osteoporosis. Moreover, we found that the bone-fat imbalance phenotype caused by Smo deletion mainly resulted from aberrant allocation of SSPCs toward adipogenic lineage at the expense of osteogenic differentiation, but not due to accelerated transdifferentiation of chondrocytes into adipocytes. Mechanistically, we found that Hh signaling regulated osteoblast versus adipocyte fate of SSPCs partly through upregulating Wnt signaling. Thus, our results indicate that Hh signaling regulates bone homeostasis and age-related osteoporosis by acting as a critical switch of cell fate decisions of Osx-Cre-targeted SSPCs in mice and suggest that Hh signaling may serve as a potential therapeutic target for the treatment of osteoporosis and other metabolic bone diseases. © 2021 American Society for Bone and Mineral Research (ASBMR).


Assuntos
Osteogênese , Osteoporose , Adipogenia/genética , Animais , Diferenciação Celular/fisiologia , Proteínas Hedgehog/metabolismo , Homeostase , Camundongos , Osteoblastos/metabolismo , Osteogênese/genética , Osteoporose/metabolismo , Células-Tronco/metabolismo , Via de Sinalização Wnt/genética
6.
J Orthop Translat ; 26: 92-100, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33437628

RESUMO

BACKGROUND/OBJECTIVE: Histology-based analyses are important tools to dissect cellular and molecular mechanisms of skeletal homeostasis, diseases, and regeneration. The success of these efforts is highly dependent on rapidly obtaining high-quality sections of mineralized skeletal tissues suitable for various analyses. However, the current techniques for preparing such sections are still far from satisfactory. This study aimed to develop a new approach for preparing high-quality undecalcified bone sections applicable to various histological analyses. METHODS: Two important modifications were made to the conventional Cryojane Tape-Transfer System, including utilization of an optimized adhesive to prepare adhesive glass slides for improving the transfer efficiency, and a cheap conventional benchtop UV transilluminator for UV curing. Cryosections of undecalcified rodent bones were prepared using this modified tape transfer approach, and their tissue morphology and structural integrity were visually examined. A variety of histological analyses, including calcein labeling, Von kossa staining, immunofluorescence, and enzymatic activity staining as well as 5-Ethynyl-2'-deoxyuridine (EdU) and TUNEL assays, were performed on these sections. RESULTS: We developed a modified version of tape transfer approach that can prepare cryosections of undecalcified rodent adult bones within 4 days at a low cost. Bone sections prepared by this approach exhibited good tissue morphology and structural integrity. Moreover, these sections were applicable to a variety of histological analyses, including calcein labeling, Von kossa staining, immunofluorescence, and enzymatic activity staining as well as EdU and TUNEL assays. CONCLUSION: The tape transfer approach we developed provides a rapid, affordable, and easy learning method for preparing high-quality undecalcified bone sections valuable for bone research. THE TRANSLATIONAL POTENTIAL OF THIS ARTICLE: Our research provides a rapid, affordable, and easy learning method for preparing high-quality undecalcified bone sections that can be potentially used for accurate diagnosis of various bone disorders and evaluation of the efficacy of different therapies in the treatment of these diseases.

7.
Biol Pharm Bull ; 42(4): 561-567, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30930416

RESUMO

Diabetes mellitus is a serious disease endangering human health worldwide. Vitamin D (Vit D) is a well-characterized regulator of calcium-phosphorus metabolism that also exerts other biological effects extending far beyond mineral homeostasis. Some epidemiological studies have suggested that Vit D has a role in defense against diabetes, although the mechanism remains unclear. Autophagy, an intracellular catabolic process, is necessary to maintain the normal structure and function of host cells. In our previous study, we found that Vit D could induce autophagy of pancreatic beta cells and prevent insulitis, although the underlying mechanisms remain to be fully elucidated. In this study, the protective effect of 1,25(OH)2D3, the physiologically active metabolite of Vit D, against streptozotocin-induced cytotoxicity in rat insulinoma cell line (INS-1) cells was explored. Cell viability and insulin secretion of INS-1 cells in response to different treatments were measured with a cell counting kit and enzyme-linked immune absorbent assay (ELISA), respectively. In addition, malondialdehyde (MDA) content and total antioxidant capacity (T-AOC) were measured by ELISA. RT-PCR and Western blot analyses were used to detect autophagy levels, reactive oxygen species (ROS) was assessed by fluorescence microscope, ultrastructure analysis was performed using transmission electron microscopy. The results demonstrated that 1,25(OH)2D3 could increase cell viability and insulin secretion of INS-1 cells, and protected cells from oxidative damage induced by streptozotocin (STZ) through autophagy activation. These findings shed light on mechanisms underlying the ameliorative effects of Vit D on diabetes mellitus.


Assuntos
Antioxidantes/farmacologia , Autofagia/efeitos dos fármacos , Calcitriol/farmacologia , Células Secretoras de Insulina/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Vitaminas/farmacologia , Animais , Linhagem Celular , Glucose/farmacologia , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Malondialdeído/metabolismo , Ratos , Estreptozocina
8.
J Cell Physiol ; 234(9): 14422-14431, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30675722

RESUMO

Cre/loxP technology is an important tool for studying cell type-specific gene functions. Cre recombinase mouse lines, including Agc1-CreERT2 , Col2a1-Cre; Col2a1-CreERT2 , Shh-Cre, Shh-CreERT2 , and Osx-Cre, have been proven to be valuable tools to elucidate the biology of long bones, yet the information for their activity in postnatal intervertebral disc (IVD) tissues was very limited. In this study, we used R26-mTmG fluorescent reporter to systematically analyze cell specificity and targeting efficiency of these six mouse lines in IVD tissues at postnatal growing and adult stages. We found that Agc1-CreERT2 is effective to direct recombination in all components of IVDs, including annulus fibrosus (AF), nucleus pulposus (NP), and cartilaginous endplate (CEP), upon tamoxifen induction at either 2 weeks or 2 months of ages. Moreover, Col2a1-Cre targets most of the cells in IVDs, except for some cells in the outer AF (OAF) and NP. In contrast, the activity of Col2a1-CreERT2 is mainly limited to the IAF of IVD tissues at either stage of tamoxifen injection. Similarly, Shh-Cre directs recombination specifically in all NP cells, whereas Shh-CreERT2 is active only in a few NP cells when tamoxifen is administered at either stage. Finally, Osx-Cre targets cells in the CEP, but not in the NP or AF of IVDs tissues at these two stages. Thus, our data demonstrated that all these Cre lines can direct recombination in IVD tissues at postnatal stages with different cell type specificity and/or targeting efficiency, and can, therefore, serve as valuable tools to dissect cell type-specific gene functions in IVD development and homeostasis.

9.
J Cell Biochem ; 119(1): 1041-1049, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28853173

RESUMO

mTORC1 signaling not only plays important physiological roles in the regulation of proliferation and osteogenic differentiation of BMSCs, but also mediates exogenous Wnt-induced protein anabolism and osteoblast differentiation. However, the downstream effectors of the mTORC1 signaling in the above processes are still poorly understood. In this study, we explored the specific role of S6K1, one of the major targets of the mTORC1 pathway, in BMSCs self-renewal and osteogenic differentiation. We first found that S6K1 was active in primary mouse bone marrow stromal cells, and further activated upon osteogenic induction. We then determined the effects of S6K1 inhibition by LY2584702 Tosylate, a selective inhibitor of S6K1 (hereafter S6KI), using both primary mouse bone marrow stromal cells and ST2 cells. Colony-Forming Unit-Fibroblast (CFU-F) assays showed that S6KI dramatically reduced the total number of colonies formed in primary BMSCs cultures. Under the basal osteogenic culture condition, S6KI significantly inhibited mRNA expression of osteoblast marker genes (Sp7, Bglap, Ibsp, and Col1a1), ALP activity and matrix mineralization. Upon Wnt3a treatments, S6KI inhibited Wnt3a-induced osteoblast differentiation and expression of protein anabolism genes in ST2 cells, but to a much lesser degree than rapamycin (a specific inhibitor of mTORC1 signaling). Collectively, our findings have demonstrated that pharmacological inhibition of S6K1 impaired self-renewal and osteogenic differentiation of BMSCs, but only partially suppressed exogenous Wnt3a-induced osteoblast differentiation and protein anabolism.


Assuntos
Células-Tronco Mesenquimais/citologia , Osteogênese/efeitos dos fármacos , Pirazóis/farmacologia , Pirimidinas/farmacologia , Proteínas Quinases S6 Ribossômicas 90-kDa/antagonistas & inibidores , Animais , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Células-Tronco Mesenquimais/efeitos dos fármacos , Camundongos , Transdução de Sinais/efeitos dos fármacos , Proteína Wnt3A/farmacologia
10.
Bone ; 97: 130-138, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28108317

RESUMO

Osteoporosis is a serious health problem worldwide. MicroRNA is a post-transcriptional regulator of gene expression by either promoting mRNA degradation or interfering with mRNA translation of specific target genes. It plays a significant role in the pathogenesis of osteoporosis. Here, we first demonstrated that miR-106b (miR-106b-5p) negatively regulated osteogenic differentiation of mesenchymal stem cells in vitro. Then, we found that miR-106b expression increased in C57BL/6 mice with glucocorticoid-induced osteoporosis (GIOP), and that silencing of miR-106b signaling protected mice against GIOP through promoting bone formation and inhibiting bone resorption. At last, we showed that miR-106b inhibited osteoblastic differentiation and bone formation partly through directly targeting bone morphogenetic protein 2 (BMP2) both in vitro and in the GIOP model. Together, our findings have identified the role and mechanism of miR-106b in negatively regulating osteogenesis. Inhibition of miR-106b might be a potential new strategy for treating osteoporosis and bone defects.


Assuntos
Inativação Gênica , Glucocorticoides/efeitos adversos , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/genética , Osteogênese , Osteoporose/induzido quimicamente , Osteoporose/genética , Proteínas Smad/metabolismo , Animais , Sequência de Bases , Proteína Morfogenética Óssea 2/metabolismo , Reabsorção Óssea/complicações , Reabsorção Óssea/patologia , Diferenciação Celular/efeitos da radiação , Dexametasona/efeitos adversos , Feminino , Técnicas de Silenciamento de Genes , Inativação Gênica/efeitos dos fármacos , Humanos , Masculino , Camundongos Endogâmicos C57BL , MicroRNAs/metabolismo , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Osteoblastos/patologia , Osteogênese/efeitos dos fármacos , Osteoporose/complicações , Osteoporose/patologia , Placenta/citologia , Gravidez , Proteínas Smad/genética
11.
J Cell Biochem ; 118(4): 748-753, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27606668

RESUMO

mTORC1 signaling has been shown to promote limb skeletal growth through stimulation of protein synthesis in chondrocytes. However, potential roles of mTORC1 in prechondrogenic mesenchyme have not been explored. In this study, we first deleted Raptor, a unique and essential component of mTORC1, in prechondrogenic limb mesenchymal cells. Deletion of Raptor reduced the size of limb bud cells, resulting in overall diminution of the limb bud without affecting skeletal patterning. We then examined the potential role of mTORC1 in chondrogenic differentiation in vitro. Both pharmacological and genetic disruption of mTORC1 significantly suppressed the number and size of cartilage nodules in micromass cultures of limb bud mesenchymal cells. Similarly, inhibition of mTORC1 signaling in chondrogenic ATDC5 cells greatly impaired cartilage nodule formation, and decreased the expression of the master transcriptional factor Sox9, along with the cartilage matrix genes Acan and Col2a1. Thus, we have identified an important role for mTORC1 signaling in promoting limb mesenchymal cell growth and chondrogenesis during embryonic development. J. Cell. Biochem. 118: 748-753, 2017. © 2016 Wiley Periodicals, Inc.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Condrogênese/fisiologia , Botões de Extremidades/embriologia , Complexos Multiproteicos/fisiologia , Serina-Treonina Quinases TOR/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/deficiência , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Células Cultivadas , Condrócitos/citologia , Condrócitos/efeitos dos fármacos , Condrócitos/fisiologia , Condrogênese/efeitos dos fármacos , Condrogênese/genética , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/fisiologia , Feminino , Botões de Extremidades/citologia , Botões de Extremidades/fisiologia , Alvo Mecanístico do Complexo 1 de Rapamicina , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/fisiologia , Camundongos , Camundongos Knockout , Complexos Multiproteicos/deficiência , Complexos Multiproteicos/genética , Gravidez , Proteína Regulatória Associada a mTOR , Transdução de Sinais , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/deficiência , Serina-Treonina Quinases TOR/genética
12.
Stem Cell Res Ther ; 7(1): 138, 2016 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-27649692

RESUMO

BACKGROUND: Mesenchymal stem cells (MSCs) are widely used in cell-based therapy owing to their multilineage potential and low immunogenicity. However, low differentiation efficiency and unpredictable immunogenicity of allogeneic MSCs in vivo limit their success in therapeutic treatment. Herein, we evaluated the differentiation potential and immunogenicity of human placenta-derived MSCs manipulated with osteogenic priming and dedifferentiation process. METHODS: MSCs from human placentas were subjected to osteogenic induction and then cultivated in osteogenic factor-free media; the obtained cell population was termed dedifferentiated mesenchymal stem cells (De-MSCs). De-MSCs were induced into osteo-, chondro- and adipo-differentiation in vitro. Cell proliferation was quantified by a Cell-Counting Kit-8 or tritiated thymidine ([(3)H]-TdR) incorporation. Meanwhile, the osteogenesis of De-MSCs in vivo was assayed by real-time PCR and histological staining. The expressions of stem cell markers and co-stimulatory molecules on De-MSCs and lymphocytes from primed BALB/c mouse with De-MSCs were determined by flow cytometry. RESULTS: De-MSCs exhibited some properties similar to MSCs including multiple differentiation potential and hypoimmunogenicity. Upon re-osteogenic induction, De-MSCs exhibited higher differentiation capability than MSCs both in vitro and in vivo. Of note, De-MSCs had upregulated immunogenicity in association with their osteogenesis, reflected by the alternated expressions of co-stimulatory molecules on the surface and decreased suppression on T cell activation. Functionally, De-MSC-derived osteoblasts could prime lymphocytes of peripheral blood and spleen in BALB/c mice in vivo. CONCLUSIONS: These data are of great significance for the potential application of De-MSCs as an alternative resource for regenerative medicine and tissue engineering. In order to avoid being rejected by the host during allogeneic De-MSC therapy, we suggest that immune intervention should be considered to boost the immune acceptance and integration because of the upregulated immunogenicity of De-MSCs with redifferentiation in clinical applications.


Assuntos
Meios de Cultura/farmacologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Osteoblastos/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Engenharia Tecidual/métodos , Adipócitos/citologia , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Animais , Desdiferenciação Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Condrócitos/citologia , Condrócitos/efeitos dos fármacos , Condrócitos/metabolismo , Meios de Cultura/química , Feminino , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Osteoblastos/citologia , Osteoblastos/metabolismo , Osteogênese/genética , Placenta/citologia , Placenta/efeitos dos fármacos , Placenta/metabolismo , Gravidez , Tecidos Suporte
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...